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An exact similarity solution is obtained for the rise of a buoyant thermal in Stokes
flow, in which both the rise height and the diffusive growth scale like t1/2 as time t

increases. The dimensionless problem depends on a single parameter Ra = B/(νκ) –
a Rayleigh number – based on the (conserved) total buoyancy B of the thermal, and
the kinematic viscosity ν and thermal diffusivity κ of the fluid. Numerical solutions
are found for a range of Ra . For small Ra there are only slight deformations
to a spherically symmetric Gaussian temperature distribution. For large Ra , the
temperature distribution becomes elongated vertically, with a long wake containing
most of the buoyancy left behind the head. Passive tracers, however, are advected
into a toroidal structure in the head. A simple asymptotic model for the large-
Ra behaviour is obtained using slender-body theory. The width of the thermal is
found to increase like (κt)1/2, while the wake length and rise height both increase
like (Ra ln Ra)1/2(κt)1/2, consistent with the numerical results. Previous experiments
suggest that there is a significant transient regime.

1. Introduction
A thermal is an isolated patch of buoyant fluid rising under the influence of gravity.

Thermals arise from a finite release of buoyancy, as distinct from plumes which are
associated with continuous release. In each case, the source of the buoyancy is usually
considered to be temperature, but could be any field that affects the fluid density,
such as composition.

Plumes and thermals can either be turbulent, in which case the growth is dominated
by turbulent entrainment of ambient fluid (see Morton, Taylor & Turner 1956), or
laminar, in which case the growth can be either by straightforward diffusion of
the buoyancy field (e.g. Morton 1960) or by laminar entrainment at the rear of
a leading vortical head (e.g. Griffiths 1991; Kumagai 2002). Interest in turbulent
plumes in the atmosphere grew during the Second World War, and a review of early
work is provided by Turner (1969). Such convection has important environmental
applications, for example to the atmosphere, oceans and lakes, where viscosities
are low and Pr < 10. This paper is concerned with very viscous laminar thermals,
motivated in part by geophysical applications to convection in the Earth’s mantle
where the enormous viscosity leads to effectively infinite-Prandtl-number dynamics
(typical estimates have Pr > 1020).

† Present address: OCIAM, Mathematical Institute, University of Oxford, 24–29 St. Giles, Oxford,
OX1 3LB.
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(a) (b)

Figure 1. Sketches showing the similarity of an isolated thermal to (a) the head of a starting
plume, and (b) the horizontal cross-section of a plume being deflected by a background shear
flow.

As well as being an interesting topic in its own right, the study of isolated very
viscous thermals may also provide useful insight into the behaviour of the heads of
starting plumes and of the cross-sections of steady plumes rising through a sheared
background flow. The qualitative relationship between thermals and such plumes is
illustrated in figure 1. In experiments (see Griffiths 1991, for example), the vortex-like
nature of the head of a starting plume closely resembles that of an isolated thermal
(figure 1a), though the lower region will be different and the buoyancy content of the
head will increase over time owing to continual feed from the plume tail. In a plume
that is deflected by a background shear flow (see Griffiths & Campbell 1991, for
example), each horizontal cross-section comprises a buoyant region with an ambient
flow passing by. This might be expected to yield a similar, albeit two-dimensional,
structure to that of an isolated thermal (figure 1b).

Very viscous plumes and thermals play a key role in the convection within the
Earth’s mantle. Surveys of this geophysical background can be found in Steinberger
& O’Connell (1998), Nataf (2000), Jellinek & Manga (2004), Hamblin & Christiansen
(1998) or Davies (1999), and the references therein. The applications to the Earth’s
mantle have prompted many experimental, theoretical and numerical studies of
viscous starting plumes (e.g. Olson & Singer 1985; Campbell & Griffiths 1990;
Griffiths & Campbell 1990; Moses, Zocchi & Libchaber 1993; Kumagai 2002;
Kaminski & Jaupart 2003), steady viscous plumes (e.g. Loper & Stacey 1983; Olson,
Schubert & Anderson 1993; Kerr & Mériaux 2004; Whittaker & Lister 2006a ,b),
and viscous thermals (e.g. Whitehead & Luther 1975; Griffiths 1986a , 1991). Many
of these studies have explored the effects of the viscosity ratio between hot and
cold material, of laminar entrainment into plumes and the consequent geochemical
signatures, and of the interaction of a plume head with an overlying lithospheric lid.
Recent investigations (e.g. Jellinek & Manga 2002; Davaille, Girard & Le Bars 2002),
have considered coupling between the location of long-lived thermal plumes, such as
the Hawaiian hot-spot, and the topography on a compositionally dense layer at the
base of the mantle, which may itself have large radiogenic heating (Boyet & Carlson
2005; Tolstikhin & Hofmann 2005; Buffett 2002).

In this paper we put many of these complications – boundaries, variable viscosity,
compositional effects – aside for the moment, and re-examine one of the fundamental
problems in convection, namely the rise and growth of an isolated very viscous
thermal. Further discussion of generalizations and applications is deferred to § 6. Two
previous papers are of particular relevance to the theoretical solutions we derive here.
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(a) (b)

Figure 2. Sketches of the flow envisaged in the large-Rayleigh-number model of Griffiths
(1986a). (a) Instantaneous velocity in a frame moving upwards with the centre of buoyancy.
(b) Material pathlines in a frame moving and expanding with the thermal.

First, Morton (1960) examined the case of a weak thermal (Rayleigh number Ra � 1)
at O(1) Prandtl number, and calculated the leading-order solution for Pr = 1. In this
regime, the flow produces only a small perturbation to the spherically symmetric
diffusing Gaussian solution. In this paper, we describe a significant generalization of
the work of Morton (1960) to fully non-linear thermals (Ra � O(1)) in Stokes flow
(i.e. at infinite Prandtl number). Advection is at least as important as diffusion and
the temperature field is greatly distorted from symmetry about the origin.

Secondly, Griffiths (1986a) developed a large-Rayleigh-number model for an
isolated viscous thermal. Based on experimental observations, it was assumed that
such a thermal comprises a reasonably well-mixed spherical core, surrounded by an
expanding thermal boundary layer that is completely entrained into the core at the
rear of the thermal (see figure 2). Equations were derived linking the thermal’s radius,
growth rate, buoyancy and rise velocity, and these were then solved to determine
the behaviour explicitly as a function of time and Rayleigh number (to within a set
of O(1) multiplicative pre-factors). The width of the thermal boundary layer was
estimated by a diffusive growth of (κta)

1/2 over an advection time ta given by the
thermal’s radius and rise velocity, where κ is the thermal diffusivity. The mass flux
into the boundary layer determined the rate of overall growth in volume of the
thermal, and the rise velocity was assumed (up to an O(1) scaling factor) to be that
of a spherical drop in Stokes flow.

Two questions naturally arise regarding the assumptions of this model: how well-
mixed and spherical is the core region, and is the thermal boundary layer completely
entrained without any buoyancy being left behind the core as a tail or wake? As we
shall see, our calculations show that a significant thermal wake containing most of
the buoyancy is eventually left behind the head, and that the head is not particularly
well-mixed.

There is a loose link here with work on the rise of a compositionally buoyant
viscous drop for which diffusion is negligible (e.g. Kojima, Hinch & Acrivos 1984;
Koh & Leal 1989; Pozrikidis 1990; Garcimartin, Mancini & Perezgarcia 1992). In the
absence of surface tension, such a drop is found to be unstable, with a thin filament-
like tail left behind the rear of an initially almost spherical head. A similar tail is shed
behind a nearly spherical cloud of sedimenting particles at low Reynolds number (e.g.
Machu et al. 2001, Metzger, Nicolas & Guazzelli 2007). In both situations the leading
patch of buoyant material can subsequently evolve into a torus, which then becomes
unstable. It should be noted, however, that diffusion is usually considered negligible
(on the relevant time scale) for compositional drops and that the ‘diffusion’ of a cloud
of particles occurs through complex hydrodynamic interactions between the particles.



298 R. J. Whittaker and J. R. Lister

Neither situation is thus fully analogous to a thermal, for which we show that the
long-time structure is governed by a balance between diffusion and advection even at
large Rayleigh number.

This paper is organized as follows. In § 2, we formalize the problem of an isolated
thermal in Stokes flow, and show that the diffusive growth and height of rise of the
thermal have the same temporal scaling (t1/2). We are thus able to find an exact
similarity solution. With suitable scalings (see § 2.2), the similarity equations depend
only on a single dimensionless parameter

Ra =
B

νκ
, (1.1)

where B is the total buoyancy of the thermal (defined formally in (2.5)), and ν and κ

are respectively the kinematic viscosity and thermal diffusivity of the fluid. Numerical
solutions for varying values of Ra are described in § 3 and § 4. As Ra( → 0, the heat
and Stokes equations decouple, there is no advection of heat, and we obtain Morton’s
leading-order Gaussian temperature distribution centred on the origin. For a weak
thermal (Ra = O(100)), we obtain a slight deformation of the Gaussian solution,
vertically translated by the mean rise velocity, and with diffusive effects (favouring
a return to spherical symmetry) balancing weak advective effects (which deform the
temperature contours slightly). For larger Ra , we obtain significant deformation of
the temperature distribution away from spherical symmetry, and at large Ra the
distribution is vertically elongated and carrot-shaped. A simple asymptotic model
based on application of slender-body theory to this structure is proposed for the
behaviour at large Ra in § 5 and tested against the full numerical solutions. Concluding
remarks, including a detailed comparison with the model of Griffiths (1986a), can be
found in § 6.

2. Problem description and formulation
2.1. Governing equations

We consider the rise of an isolated thermal whose buoyancy is solely attributable to a
temperature T (x, t) that exceeds the uniform background temperature T0. We use the
Boussinesq approximation, and assume that the viscosity ν, thermal diffusivity κ and
thermal expansivity β are all constant. Inertia, viscous heating and non-Newtonian
effects are assumed to be negligible. The governing equations are therefore

ν∇2u =
1

ρ0

∇p + g[1 − β(T − T0)]êz, (2.1)

∇ · u = 0, (2.2)

∂T

∂t
+ (u · ∇)T = κ∇2T , (2.3)

where u is the fluid velocity and p the pressure. The ambient fluid density is ρ0 and
the acceleration due to gravity is −gêz, where êz is the unit vertical vector. We work
in an unbounded domain, with the far-field conditions

u → 0, p + ρ0gz → p0 and T → T0 as |x| → ∞. (2.4)

We define the total buoyancy

B = gβ

∫
(T − T0) d3x, (2.5)
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Figure 3. A sketch of the rising thermal. Diffusion of heat causes the extent of the thermal
to increase like t1/2, and the temperature difference to decay like t−3/2. Since the mean rise
velocity w ∝ t−1/2, the rise height also scales like t1/2 and so the region swept out by the
thermal is a cone. The dependence of the dimensionless radial and vertical scales a and � on
the Rayleigh number Ra is described in § 5.

which is conserved by virtue of (2.2)–(2.4) and is assumed to be finite. We define the
centre of buoyancy xb in the natural way by

xb(t) =
gβ

B

∫
x (T − T0) d3x, (2.6)

and choose the coordinate origin so that xb(0) = 0. Finally, we define a mean rise
velocity w by the buoyancy-weighted average

w(t) =
gβ

B

∫
(êz · u)(T − T0) d3x. (2.7)

By differentiating (2.6) with respect to time, substituting from (2.3) and (2.2), and
integrating by parts, we deduce that

êz · dxb

dt
= w. (2.8)

Therefore w is also the speed at which the centre of buoyancy rises through the fluid,
and

zb(t) =

∫ t

0

w(t ′) dt ′. (2.9)

For simplicity, we shall restrict our attention to axisymmetric thermals. The
apparent ease of producing axisymmetric thermals in experiments (e.g. Whitehead
& Luther 1975; Griffiths 1986b) suggests that an axisymmetric configuration is stable
to sufficiently small perturbations, most probably through the smoothing action of
diffusion.

A sketch of the situation under consideration is shown in figure 3.

2.2. Similarity representation

With a purely diffusive solution, the length scale L of the thermal would increase
like (κt)1/2, and hence the temperature difference T − T0 would decay in proportion
to t−3/2 in order to satisfy buoyancy conservation. The velocity in the Stokes flow
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induced by a total buoyancy B distributed over a length scale L is readily shown (cf.
the rise velocity of a sphere) to scale like B/νL ∝ Ra(κ/t)1/2. The distance risen will
thus scale like

∫
t−1/2 dt ∝ t1/2, which is the same as the distance spread by diffusion

(see figure 3). It is therefore possible to seek a similarity solution in which all lengths
are scaled with (4κt)1/2.

We introduce a similarity position vector ξ defined by

ξ =
x

(4κt)1/2
. (2.10)

The dependent variables are then represented in the similarity solution as follows:

T (x, t) − T0 =
B

gβ(4κt)3/2
Θ(ξ ), (2.11)

u(x, t) =
κ

(4κt)1/2
U(ξ ), (2.12)

p(x, t) − p0 + ρ0gz =
ρ0ν

4t
P (ξ ). (2.13)

We shall make use of both cylindrical polar coordinates (ρ, φ, ζ ) with corresponding
unit vectors (êρ, êφ, êζ ), and spherical polar coordinates (ξ, θ, φ). The axial vector êζ

and spherical axis θ = 0 are defined to point vertically upwards.
For the numerical method described in § 4.1, we retain a time-dependence in the

system, in order to use the temporal convergence towards the similarity solution. If
we allow Θ to depend on t as well as ξ , and substitute (2.10)–(2.13) into (2.3), then the
resultant appearance of the group 4t(∂/∂t) shows that the natural time-like variable
in similarity space is τ = 1

4
ln t .

Under the change of variables from (x, t) to (ξ , τ ), the governing equations (2.1)–
(2.3) become

∇2U = ∇P − Ra Θ êζ , (2.14)

∇ · U = 0, (2.15)

∂Θ

∂τ
+ ∇ ·

(
(U − 2ξ ) Θ

)
= ∇2Θ, (2.16)

where the gradients are now with respect to ξ . The addition of −2ξ to the velocity
U in (2.16) arises from the coordinate transformation (2.10), and reflects the fact
that a point at fixed physical position x moves towards the origin of the expanding
coordinate system ξ . The desired similarity solution is a steady (τ -independent)
solution for U , P and Θ , and the τ -dependence in (2.16) describes the evolution
towards such a steady state.

The boundary conditions (2.4) and buoyancy normalization (2.5) become

U → 0, P → 0 and Θ → 0 as |ξ | → ∞, (2.17)∫
Θ d3ξ = 1. (2.18)

Finally, the similarity form of the mean rise velocity is given by

w(t) =
κ

(4κt)1/2
W, where W =

∫
(êζ · U) Θ d3ξ. (2.19)

We shall calculate the steady solutions of (2.14)–(2.18), which now depend only
upon the single dimensionless parameter Ra . This parameter is a Rayleigh number
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(since it gives the strength of the forcing), but it can also be thought of as a Péclet
number (since it determines the relative strength of advection in the heat equation).
It is the same as the parameter A of Morton (1960).

2.3. Neglect of inertia

In § 2.1, we assumed that inertia was negligible. The Reynolds number of the flow is

Re = max{W�κ/ν, κ/ν}, (2.20)

where � is an appropriate dimensionless length scale in the similarity frame. The
two possibilities in (2.20) arise from considering the neglected nonlinear and unsteady
terms, respectively, in the Navier–Stokes equations. Owing to the form of the similarity
solution, the Reynolds number (2.20) has no explicit time dependence. Substituting
the scalings (5.14) and (5.17) for � and W (from the analysis of § 5.1) into (2.20) and
requiring Re � 1, we find that the Prandtl number Pr = ν/κ must satisfy

Pr 	 max{Ra lnRa, 1} (2.21)

for inertia to be negligible. This condition is easily satisfied within the Earth’s mantle,
for example.

3. Series expansion for small Rayleigh number
To solve the similarity system (2.14)–(2.18), we first briefly consider a formal series

expansion for Ra � 1. Each of the variables is expanded in powers of Ra (e.g.
Θ = Θ (0) + Ra Θ (1) + Ra2 Θ (2) + · · ·). The use of spherical polar coordinates is found
to be convenient.

If we know Θ (k−1) for some integer k, then we can solve the Stokes equations (2.14)
and (2.15) at O(Rak) to determine U (k). We can then compute the rise velocity W (k)

using (2.19), and the O(Rak) component of the ∇ ·(UΘ) term in the heat equation
(2.16). (Note that U (0) = 0, so Θ (k) is not needed.) Finally, we solve the heat equation
(2.16) at O(Rak) to determine Θ (k). The process can then be repeated at the next
order. This is essentially the same method as that used by Morton (1960) to O(Ra)
for a fluid of finite Prandtl number.

3.1. Analytical progress

Since U (0) = 0, the nonlinear advection term is zero at leading order. At O(1), the
solution of (2.16) subject to (2.18) is

Θ (0) = π−3/2 e−ξ 2

. (3.1)

As expected, the leading-order temperature distribution is a spherically symmetric
Gaussian. With this result, (2.14) and (2.15) can be solved at O(Ra) in a number
of ways to obtain U (1) and P (1). For example, one can use the well-known solution
for an isoviscous spherical drop (see § 4.9 of Batchelor 1967), and integrate over a
weighted continuum of these solutions all centred on the origin but with different
radii. Alternatively, the Green’s function method described in § 3.2 can be employed.
Either way, we obtain

U (1) =
1

8π

[(
2

ξ
− 1

ξ 3

)
erf ξ +

2√
π ξ 2

e−ξ 2

]
cos θ êξ

+
1

8π

[
−

(
1

ξ
+

1

2ξ 3

)
erf ξ +

1√
π ξ 2

e−ξ 2

]
sin θ êθ , (3.2)
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Figure 4. The dimensionless rise velocity W for small Rayleigh number Ra . Results are
computed using the series expansion of § 3 and full numerical method of of § 4. The [7, 6]
Padé approximant to the series has singularities at Ra ≈ ± 259ı, consistent with the radius of
convergence suggested by the plotted partial sums, and also the pattern of signs in the series.

P (1) =
1

4π

[
1

ξ 2
erf ξ − 2√

πξ
e−ξ 2

]
cos θ. (3.3)

From (2.19) and (3.2), the corresponding leading-order rise velocity is found to be

W (1) =
1

3
√

2π3/2
≈ 0.04233. (3.4)

In principle, we could now obtain the first correction to the temperature distribution
by solving (2.16) at O(Ra). While the solution can be expressed in closed form as a
set of integrals, we are unable to evaluate them analytically. However, we do know
by symmetry that there is no correction to W at the next order. Thus

W =
Ra

3
√

2π3/2
+ O(Ra3) (3.5)

3.2. Numerical series expansion

The series expansion of the previous section has been continued numerically. At
O(Rak), the solution is a sum over spherical harmonics of degree n � k multiplied by
radial functions that are related by ordinary differential equations. These were solved
on a radial grid using a tridiagonal finite-difference scheme to compute the thermal
distribution from the advective forcing at each order, and a Green’s-function method
to compute the Stokes flow from the thermal distribution. Full details can be found
in Whittaker (2007).

Terms were computed up to O(Ra40). As can be seen in figure 4 the series only
converges for Ra � 260. The singularities responsible for the divergence appear to lie
on the imaginary-Ra axis, and Padé approximants allow the solution to be extended
further on the real axis. This provided a useful check on the accuracy of the full
numerical solutions described in § 4, which are able to extend the solution to much
larger values of Ra .
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4. Numerical solution for larger Rayleigh number
We tried two different numerical approaches to iterate the time-dependent system to

steady state at large Ra . The first, based on a spherical-harmonic representation, was
limited by numerical stability to Ra � 3000. The second, based on a Green’s-function
representation on a cylindrical grid, was used successfully to obtain solutions up to
Ra = 10 000. Only the second more successful method is described here, but details
of the first method can be found in Whittaker (2007).

The first method did however provide the motivation for the second approach.
The results showed that the self-similar buoyancy distribution becomes vertically
elongated as Ra increases (see figures 6 and 7 below). This makes the spherical-
harmonic representation less appropriate, and is probably responsible for the stability
issues that limited the method’s success.

4.1. Solution on a cylindrical grid

Motivated by the apparent solution structure at large Ra , we solved (2.14)–(2.18) on
a cylindrical grid. A finite cylindrical domain

D = {(ρ, φ, ζ ) : ρ < ρmax, ζmin < ζ < ζmax} (4.1)

was divided into annular cells

Dij = {(ρ, φ, ζ ) : ρi−1 < ρ < ρi, ζj−1 < ζ < ζj }, (4.2)

with the N + 1 points {ρi} and M + 1 points {ζj } being uniformly spaced. The
temperature was represented by the value at the centre of each cell, and the velocity
by the normal components across each of the cell boundaries. The domain size
was chosen to be sufficiently large that the steady-state temperature at the domain
boundaries was typically less than 10−10 times the peak value.

Using the time-dependent heat equation (2.16), we iterated towards a steady state
by alternately solving the Stokes equations (with the previous buoyancy distribution)
and the heat equation (with the previous velocity field). We used a Green’s-function
representation (see Appendix A) for the Stokes equations, and a finite-difference
‘Alternating Direction Implicit’ (ADI) scheme (see Press et al. 1986, § 17.6) for the
heat equation. The ADI scheme was written to conserve heat at each time step, and
we applied a no-heat-flux boundary condition on the (artificial) external boundaries
of the domain.

The time-consuming part of each time step is the computation of the velocity
using the Green’s function, which is an O(N2M2) process. To improve efficiency,
we performed several ADI steps on the heat equation before re-computing the
velocity field, and also neglected velocity contributions from outer points where
the temperature is less than a small threshold value (typically 10−8). In addition,
the velocity field (which is significantly smoother than the temperature field) was
computed directly from the Green’s function at only a quarter of the grid-points.
Interpolation was then used to fill in the gaps.

For larger values of Ra , a small time step was required for stability, and the steady
state was approached by exponentially modulated sinusoidal oscillations. The period
of oscillation was independent of the time step used, and could be several thousands
of time steps long. The perturbations in the buoyancy distribution were concentrated
in the head region, and the period of the oscillations was comparable with the
circulation period of the relative effective advection velocity around the vortex in
the head (see figures 7 and 12 below). We therefore attribute the oscillations to a
physical eigenmode of the system rather than a numerical artifact, probably involving
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Figure 5. Plots of various velocity fields (solid) and temperature contours (dashed) at
Ra = 400. (a) Streamlines of the similarity velocity U . (b) Streamlines of the velocity U − W êζ

relative to the rising centre of buoyancy at ζb = 7.58. (c) Material pathlines corresponding to
the effective advection velocity U − 2ξ in the expanding similarity frame. Owing to the t1/2

growth of the thermal, plot (c) gives a more useful representation of the flow than either of
the instantaneous streamline plots.

the advection of an initial thermal anomaly around the head while it decays slowly
towards the similarity solution.

To speed up the convergence (since we are principally interested in finding the
steady state), it was convenient occasionally to stop the time stepping and to average
the temperature distributions from two antipodal times of the oscillation. The time
stepping was then restarted from this new distribution and the process could be
repeated. For larger Ra this was found to be very effective at accelerating the
convergence to steady state.

4.2. Results

Figures 6–8 and 12 show how the computed similarity velocity and temperature fields
change as Ra increases, while figures 9–11 show different aspects of the solution
for Ra = 3000. The streamlines of U , the velocity relative to the origin, are not
a very instructive way to visualize the velocity field, since the vertical component
of U is everywhere positive (e.g. figure 5a). A better alternative is to consider the
velocity relative to another reference point fixed in the expanding similarity frame.
For example, U − W êζ describes flow relative to the rising centre of buoyancy (e.g.
figure 5b). However, whichever reference point is chosen, the resulting streamlines
lose significance away from that point, owing to the time-dependence of the diffusing
flow. This is especially important for larger Ra when the buoyancy distribution is
highly elongated, so that even the centre of buoyancy is not a good reference point
for the whole flow. Instead, we visualize the flow using the trajectories of material
fluid elements in the similarity frame (e.g. figure 5c). These are given by the vector
field U − 2ξ , which is also the effective advection velocity in the heat equation (2.16).
The pathlines defined by this ‘velocity’ field indicate how both fluid elements and
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Figure 6. Plots of the velocity (solid) and temperature contours (dashed) for (a) Ra = 0,
(b) Ra = 100 and (c) Ra = 400. The solid lines are pathlines corresponding to the effective
advection velocity U − 2ξ , which show material trajectories in the expanding similarity frame.
As Ra increases, the temperature distribution is displaced vertically. It is still roughly spherical
at Ra =100, but by Ra = 400 a noticeable wake is left behind the main head, which extends
back to ζ = 0.

heat are transported, and provide a good intuitive feel for the flow in the expanding
similarity frame.

For small Ra (see figure 6a), the buoyancy distribution is roughly spherical and
the material pathlines converge on a nodal point on the axis. As Ra increases, the
buoyancy distribution starts to elongate vertically with a ‘tail’ forming below the
‘head’.

At Ra ≈ 100 (figure 6b), the node moves away from the axis, forming an attracting
ring and leaving a saddle point behind (figure 6c). This transition occurs when the
outward radial velocity Uρ generated by the buoyancy becomes greater than the
inward radial advection −2ρ due to the coordinate transformation. For larger Ra
the pathlines approach the attracting ring in a spiral manner.

For Ra � 300, the buoyancy distribution shows a clear wake or tail protruding
behind a more spherical head region (figures 6c and 7). The temperature contours are
compressed at the leading edge of the head where the thermal is rising into the cooler
ambient fluid, and the axial strain is negative at the forward stagnation (saddle) point.

Figure 8 illustrates the way that fluid elements are advected towards the toroidal
vortex defined by the stable manifold of the forward stagnation point. (We use ‘vortex’
here to describe the spiral geometry of the pathlines, rather than the physical vorticity
which is diffused throughout this Stokes flow.) Any region of fluid initially marked
by a passive tracer is advected along the pathlines of the effective velocity U −2ξ and
becomes confined near the toroidal vortex. The sequence of shaded regions shown
resembles the sequence of shapes – spherical, mushroom, umbrella, toroidal ring –
seen in figures 10–12 of Griffiths (1986b).

Figure 9 shows vertical profiles of the centreline velocity and temperature for
Ra = 3000. Head and tail regions are clearly visible in 30 <ζ < 35 and 5 <ζ < 30
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Figure 7. Combined pathline (solid) and temperature (dashed) plots for (a) Ra = 1000 and
(b) Ra = 3000. The pathlines are for the effective advection velocity U − 2ξ . The temperature
contours are shown at intervals of 8 × 10−3.

respectively, and the velocity and temperature exhibit a remarkably linear dependence
on ζ throughout most of the tail. Similar behaviour is found for all Ra � 1500.
Figure 10 shows several horizontal temperature cross-sections within the tail for
Ra = 3000. Each cross-section has been rescaled by the centreline value Θc, and the
data collapse almost perfectly onto the Gaussian form Θ(ρ, ζ ) = Θc(ζ ) exp(−ρ2/a2),
with the width a independent of ζ . This behaviour is also found for Ra � 1500.
Figure 11 shows a global view of the pathlines for Ra = 3000, which is typical of the
large-Ra behaviour.

For Ra � 1500, there is a secondary temperature maximum on the axis at the top of
the tail, and a weak minimum between this and the start of the head. For Ra � 6000,
the global temperature maximum, which is in the head, moves off the axis to form
a horizontal ring (see figure 12). We attribute both of these changes to the cooling
effect of colder fluid being advected in under the head, as seen by the pathlines in
figures 7 and 12, and by the advection of a patch of passive tracer in figure 8.
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Figure 8. The advection of a passive tracer for (a) Ra = 1000 and (b) Ra = 3000. The tracer
initially occupies the region within the contour Θ = 0.016 (dashed) of the similarity solution
(cf. figure 7); the different shaded regions show the region occupied after equal intervals of
similarity time τ . The tracer is advected along pathlines (solid) towards the toroidal vortex
defined by the stable manifold of the forward stagnation point.

As Ra increases and the tail region lengthens, the global maximum temperature
decreases (see figure 13) both in absolute terms and relative to the typical temperatures
in the tail. The tail width a decreases only slightly with Ra (see figure 14 below) as
does the size of the head region. Since the length and the volume of the tail increase
with Ra , the effect of all these changes is that the proportion of the total buoyancy
contained in the tail increases with Ra towards 100%, and the proportion in the head
decreases to zero.

5. Asymptotic behaviour at large Rayleigh number
We have already seen that as Ra increases, a greater proportion of the buoyancy

becomes contained in the tail. In addition, the length scale that dominates the
motion in Stokes flows tends to be the largest dimension (in this case the length
of the tail), with the smaller width for a slender body contributing only through a
logarithmic factor of the aspect ratio. We therefore expect the tail region to be key
in understanding the behaviour at large Ra .

In this section, we develop a model for the tail and show that it compares well with
our numerical results. In particular, we consider the variation with Ra of the width
a and length � of the buoyancy distribution, the gradients Γ and G of the centreline
velocity and temperature in the tail, and the mean rise velocity W .
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Figure 9. Vertical profiles of the centreline temperature Θc and vertical velocity Wc for
Ra = 3000. Also shown is the velocity 2ζ associated with the expanding similarity frame, and
the far-field Stokeslet velocity Ra/(4π|ζ − ζb|) (where ζb ≈ 27 is the height of the centre of
buoyancy). Observe the almost perfect linear behaviour of Wc and Θc over most of the tail
region 5 < ζ < 30. Similar results are obtained for other Ra � 1500.
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Figure 10. Equally spaced horizontal temperature profiles within the tail for Ra =3000. The
temperature values in each section have been scaled by the centreline temperature Θc(ζ ).
The solid line is Θ = Θc exp(−ρ2/a2), where a = 0.842. Other values of Ra exhibit similar
behaviour, and the slight variation in a is shown in figure 14.

5.1. A simple asymptotic model for the tail

By integrating the heat equation (2.16) in steady state over a horizontal slice, and
noting that Θ → 0 as ζ → ±∞, we obtain∫ ∞

0

[
∂Θ

∂ζ
+ (W − 2ζ )Θ

]
2πρ dρ = 0. (5.1)
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Figure 11. Combined pathline (solid) and temperature (dashed) plot for Ra = 3000. This is
a zoomed-out view of figure 7(a), in order to show the global behaviour of U − 2ξ . In the
far field, the −2ξ term due to the coordinate expansion dominates and fluid initially moves
towards the origin of the similarity frame. Fluid approaching the head from above is deflected
around it. Fluid approaching the buoyancy in the tail is deflected upwards and then travels up
through the tail and into the toroidal vortex in the head.

In other words, the net vertical heat flux through each horizontal cross-section is zero.
We begin the modelling by assuming that the temperature distribution is vertically

elongated, so that the height � is much larger than the width a. Vertical derivatives
will then typically be much smaller than their horizontal counterparts. Therefore
the vertical diffusion term ∂Θ/∂ζ in (5.1) is negligible compared with the advection
terms. Also, there will be little variation in the vertical velocity across the width of
the tail. We therefore obtain W ∼ 2ζ as the leading-order balance in (5.1). Applying
mass conservation to determine U from W , we obtain the stagnation-point flow

(U, W ) ∼
(
− 1

2
Γρ, Γ ζ

)
, (5.2)

where

Γ ∼ 2. (5.3)
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Figure 12. Combined pathline (solid) and temperature (dashed) plots as in figure 7.
(a) Ra = 6000, and (b) Ra =10 000. The maximum temperature no longer occurs on the axis.
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Figure 13. Numerical results for the maximum temperature on the axis Θ∗ as a function of
Ra . For Ra � 6000 this is slightly smaller than the global maximum temperature, which lies
off the axis.

Returning to the full heat equation (2.16), the vertical advection terms cancel
at leading order, and vertical diffusion is much smaller than horizontal diffusion.
Therefore the leading-order balance is between horizontal advection and horizontal
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diffusion. We obtain
1

ρ

∂

∂ρ

(
ρ

∂Θ

∂ρ

)
+ 3ρ

∂Θ

∂ρ
+ 6Θ = 0, (5.4)

which yields

Θ = g(ζ ) e−ρ2/a2

, (5.5)

where g(ζ ) is an as yet unknown function of ζ , and

a2 = 2
3
. (5.6)

Applying slender-body theory (see Hinch 1991, § 5.4), we find that the induced
vertical velocity W at each height is

W ∼ F

2π
ln

(
�

a

)
(5.7)

at leading order, where

F = Ra

∫ ∞

0

Θ 2πρ dρ = πa2Ra g(ζ ) (5.8)

is the horizontally integrated buoyancy at that height. Using (5.2) and (5.8) to eliminate
F and W from (5.7), we obtain g(ζ ) = Gζ , where the uniform temperature gradient
G is related to Γ by

Γ ∼ a2Ra G

2
ln

(
�

a

)
. (5.9)

The temperature distribution is therefore given by

Θ ∼ Gζe−ρ2/a2

(5.10)

for 0< ζ < �. Application of the buoyancy normalization (2.18) gives

πG�2a2

2
∼ 1, (5.11)

and the rise velocity is evaluated from (2.19) as

W ∼ 2
3
Γ �. (5.12)

Combining (5.3), (5.6), (5.9), (5.11) and (5.12), we obtain the following leading-order
scalings:

a ∼
(

2
3

)1/2
, (5.13)

� ∼
(

Ra ln Ra

4π

)1/2

, (5.14)

Γ ∼ 2, (5.15)

G ∼ 12

Ra lnRa
, (5.16)

W ∼ 2

3

(
Ra lnRa

π

)1/2

. (5.17)

5.2. Model comparison

Some of the predictions of § 5.1 are compared with the numerical results in figures 9,
10 and 14–16. Figure 9 shows that the predicted linear behaviour of the centreline



312 R. J. Whittaker and J. R. Lister

0.81

0.82

0.83

0.84

0.85

0.86

1000 2000 5000 10000

a

Ra

Numerical data
Tail model: a = (2/3)1/2

Fit: a0 + c(ln Ra)–α

Fit: a0 + cRa–α

Figure 14. The tail width a as a function of Ra . The width is determined by fitting
Θc(ζ ) exp(−ρ2/a2) to the numerical results for Θ(ρ, ζ ) over the linear part of the tail. The
data for Ra > 2500 are fitted well by either of the forms shown in the legend, with the limiting
values a0 being 0.831 and 0.830, and the exponents α being 0.92 and 6.9, respectively.

velocity and temperature is indeed seen for Ra =3000, though the zero points do not
correspond to the coordinate origin (particularly for the temperature). Although not
shown, similar behaviour is seen for other values of Ra � 1500.

Figure 10 shows that the horizontal temperature profiles at Ra = 3000 are indeed
Gaussian to a good approximation, though the width a is around 0.841 rather than
the predicted value of 0.816. Other values of Ra also lead to Gaussian behaviour, and
figure 14 shows the variation of the width a with Ra . While there is a slow decreasing
trend towards 0.816, the value of a appears to be tending to a finite limit around
0.83.

Figures 15 and 16(a–c) compare the numerical results with the other parameters
estimated by the model. The agreement for the mean rise velocity W (figure 15) is
particularly good, and the velocity gradient Γ (figure 16a) is only underestimated by
10–15%. Some underestimate is to be expected here, since the model assumes that the
vertical velocity is horizontally uniform and that there is no downward conduction of
heat. The true centreline velocity must therefore be larger than that predicted, since
it must provide extra upward advection to account for the lower velocity away from
the axis and the effect of downward conduction in the vertical heat balance (5.1).

The agreement for the temperature gradient G (figure 16b) and length � (figure
16c) is less good, being out by a factor of about 2 in each case. However, the overall
trends are captured correctly by this simple model, and the discrepancies are largely
addressed by extensions to the model as described below.

5.3. Extended model for the tail

Two improvements are now made to the model of § 5.1, which lead to better agreement
with the numerical results. First, we improve upon the slender-body estimate (5.9)
which links the velocity and temperature gradients. Secondly, we take into account the
fact that the vertical velocity decreases slightly away from the axis when considering
the vertical heat-flux balance in (5.1). As outlined briefly in Appendix C, these
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Figure 15. The mean rise velocity W as a function of Ra . Numerical results and the predictions
of the two models are shown. The slope d(lnW )/d(lnRa) varies from about 0.63 to 0.57 across
the plot, which is consistent with the (Ra ln Ra)1/2 behaviour of the models in § 5.1 and § 5.3,
and clearly different from the Ra3/4 proposed by Griffiths (1986a; see table 1).

improvements do not include all the corrections required for a formal asymptotic
solution at next order, but they do give a much better analytical approximation to
the full numerical results. The complete next-order solution can only be computed
numerically, and the remaining corrections offer little quantitative improvement.

In the original asymptotic model, slender-body theory allowed us to calculate the
leading-order buoyancy field (5.5) from the leading-order velocity (5.2). For simplicity,
we assume that a better approximation for the buoyancy field can be found in the
form

Θ =

⎧⎨
⎩

G(ζ − ζ0) e−ρ2/a2

for ζ0 < ζ < � + ζ0,

0 otherwise,
(5.18)

where the free parameters G and ζ0 are to be determined, � is given by the buoyancy
normalization (5.11), and a2 = 2/3 as before. The form of (5.18) can be partly
motivated by the leading-order model and the numerical results. For example, (5.18)
is a special case of (5.5) and the vertical offset ζ0 can be seen in figure 9. In detail,
however, it is justified by the analysis outlined in the Appendices.

Given a buoyancy distribution in the form of (5.18), an improved approximation of
the induced velocity field can be calculated as described in Appendix B. From (B 8)
the centreline velocity gradient Γ is now related to the buoyancy gradient G by

Γ ∼ a2Ra G

2

(
ln

(
�

a

)
+

γ

2
− 3

2

)
. (5.19)

If we took only the leading-order logarithmic term on the right-hand side, then (5.19)
would reduce to (5.9) of the asymptotic model.

Turning to the vertical heat flux condition (5.1), we neglect the ∂Θ/∂ζ contribution
as before, and substitute for Θ and the improved estimate of W . We obtain

Gζ̃

∫ ∞

0

e−ρ2/a2

(Ra G Wi − 2ζ̃ − 2ζ0) 2πρ dρ = 0, (5.20)
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Figure 16. Numerical results and some predictions of the two models as functions of Ra .
The vertical gradients (a) Γ = dWc/dζ of the centreline velocity and (b) G = dΘc/dζ of the
centreline temperature, each in the linear part of the tail. (c) The vertical length � of the
thermal. (For the numerical results, � is taken to be the distance between the extrapolated zero
of the linear centreline temperature in the tail and the position of maximum temperature on
the axis.)

where ζ̃ = ζ − ζ0 and Wi(ρ, ζ̃ ) is given by (B 6) and (B 8). The integrand in (5.20) is
only a linear function of ζ̃ . Consideration of the coefficients of ζ̃ 1 and ζ̃ 0 yields

a2Ra G

2

(
ln

(
�

a

)
+

γ

2
− 3

2
− ln 2

2

)
∼ 2 (5.21)
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and
a2�Ra G

4
∼ 2ζ0, (5.22)

which determine G and ζ0. Comparing (5.19) with (5.21), we see that the centreline
velocity gradient Γ is slightly greater than 2, which compensates for the decrease in
the vertical velocity away from the centreline. We can also substitute the leading-order
term from (5.21) into (5.22) to obtain

ζ0 ∼ �

ln(�/a)
, (5.23)

and show that the offset ζ0 satisfies a � ζ0 � �.
The new results (5.19) and (5.21) lead to the revised large-Ra scalings

� ∼
(

Ra f (C/Ra)

4π

)1/2

, (5.24)

Γ ∼ 2 +
2 ln 2

f (C/Ra)
, (5.25)

G ∼ 12

Ra f (C/Ra)
, (5.26)

W ∼ 2

3

(
Ra f (C/Ra)

π

)1/2 (
1 +

3

2f (C/Ra)

)
, (5.27)

where C =8πa2e3−γ ≈ 189, and f (x) is defined to be the solution of x = f exp(−f )
such that f (x) > 1 for 0 <x < e−1. The large-Ra asymptotic behaviour is still as in
(5.13)–(5.17), but numerically significant logarithmic correction terms are also built
in. The improvements can be seen in figures 15 and 16, where there is good agreement
between the extended model and the numerical results. The remaining corrections at
this order, the higher-order corrections in the slender-body expansion in powers of
[ln(�/a)]−1, and the higher-order correction due the buoyancy in the head all need
numerical evaluations. We therefore leave the theoretical development with the good
analytical predictions of the extended model.

6. Discussion and conclusions
6.1. Summary

We have calculated exact similarity solutions to the full Stokes and temperature
equations for the rise of an isolated constant-viscosity thermal in Stokes flow. As
Ra increases from zero, the initially spherically symmetric Gaussian temperature
distribution of Morton et al. (1956) is displaced upwards and becomes deformed,
with a wake or tail beginning to form at the rear. At large Ra , the temperature
distribution has a roughly spherical head and a long tail stretching back almost
to the origin. These changes with Ra can be seen in figures 6, 7 and 12. The
largest temperature gradients define the leading edge of the head, which is roughly
hemispherical.

The size of the head (based on the width over which the temperature is more than
a fixed percentage of its maximum value) varies little with Ra , but the maximum
temperature in the head decreases (figure 13) so that the total buoyancy in the head
tends to zero as Ra → ∞. At large Ra , most of the buoyancy is thus contained in the
tail, which extends most of the way back to the origin (figure 9). Hence, the velocity
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Present results G86a

a 1 Ra1/4

� (Ra ln Ra)1/2 Ra1/4

Θ∗ (Ra ln Ra)−1/2 Ra−3/4

W , ζb (Ra ln Ra)1/2 Ra3/4

α (Ra ln Ra)−1/2 Ra−1/2

Table 1. Comparison of the asymptotic behaviour of the large-Ra models (either asymptotic
or extended) presented here with that of Griffiths (1986a). The semi-angle α of the cone swept
out by the rising thermal is given by tanα ∼ a/ζb . The results of Griffiths (1986a) have been
converted to the similarity variables used herein, and for simplicity O(1) factors have been
omitted. The factors for the present asymptotic model can be seen in (5.13)–(5.17), with the
extended results in (5.24)–(5.27).

field is dominated by the buoyancy in the tail. The centreline temperature and vertical
velocity are both linear functions of height over most of the tail, and the horizontal
temperature profiles there are Gaussian (figures 9 and 10).

The topology of the material trajectories in the similarity frame (given by the
effective advection velocity U − 2ξ ) changes at Ra ≈ 100. For larger Ra the material
trajectories in the head show characteristics of a toroidal vortex and spiral towards
an attracting ring at the centre of the vortex (see figure 12). Calculations of the
advection of a region of passive tracer (figure 8) give a sequence of shapes – spherical,
mushroom, umbrella, toroidal ring – that closely resembles the sequence seen in the
advection of a region of dyed fluid in experiments (e.g. figures 10–12 of Griffiths
1986b).

In § 5 we developed an asymptotic model for the tail, and an extended model with
some of the next-order corrections, which compare well with the numerical results.
This agreement strongly supports the idea that the asymptotic dynamics of the rise
at large Rayleigh number are controlled by the tail, rather than the head.

6.2. Comparison with the model of Griffiths (1986a)

The time-dependences in the scalings for the diffusive growth, cooling and ascent of
the thermal (as outlined in § 2.2) are the same as those in the simple geometrical
model of Griffiths (1986a). The equivalence of the temporal scalings is inevitable on
dimensional grounds owing to the form of the equations and to the fact that any
length scale derived from the problem parameters must be proportional to t1/2. (The
only dimensionless groups are Pr and Ra , which are both independent of time.) These
temporal scalings are also consistent with the experimental observations in Griffiths
(1986a).

However, the scalings with Ra obtained here from numerics and the large-Ra
asymptotic model do not match those of Griffiths (1986a), as can be seen by the
comparisons in table 1. (Since the Griffiths model has the same temporal scalings,
direct comparisons can be made using our similarity variables.) The different Ra
scalings are a consequence of the different buoyancy distributions in the models. The
Griffiths model assumes that the buoyancy remains concentrated in a compact and
roughly spherical head, which leads to a rise velocity that increases like Ra3/4. Our
asymptotic model predicts that the buoyancy does not remain in a compact head, and
instead most of it is spread over an elongated tail, giving a smaller rise velocity that
increases like (Ra lnRa)1/2. On the one hand, the Griffiths scalings for the dimensions
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and rise velocity of the thermal are clearly inconsistent with our numerical results,
as seen in figures 14, 15 and 16(c). On the other hand, the Ra3/4 scaling for the rise
velocity (or height), in particular, agrees well with the experimental measurements.
This is all somewhat puzzling and merits discussion. We first make a brief
mathematical point, and then discuss the experimental evidence in the next section.

Griffiths (1986a) comments (p. 136) that a major assumption of his model is that
“all the heat in the boundary layer [around the head] is entrained, conserving the
total buoyancy of the thermal and preventing the formation of a warm trail”. While
conceding that there may be some buoyancy loss into a thermal wake, he argues
that the loss from the outer edge of a boundary layer would be small, and that the
solution with constant buoyancy gives a satisfactory description of the experimental
results. The mathematical point is that any heat loss from a compact thermal prevents
it from being the long-term solution. As shown by Griffiths (1986b), the pathlines
in the expanding frame for a compact roughly spherical thermal at large Ra take
the form shown schematically in figure 17(a). There is a forward stagnation point
and an attracting ring within the thermal, and a rear stagnation point just behind
the thermal. (Since W falls off rapidly behind the thermal on its radial scale, there
is a rearward point where W = 2ζ .) The stable manifold of the rear stagnation point
defines a critical surface extending to infinity, which separates pathlines that end near
the origin from those that end in the head. Diffusion across this critical surface must
result in a net loss of buoyancy from the thermal and these losses, however small,
would accumulate over time. Eventually the buoyancy left behind in the thermal
wake has a greater dynamical effect than that still in the head, and the flow structure
changes to that shown schematically in figure 17(b), and seen in our calculated
similarity solutions. The elongated buoyancy distribution ensures that W > 2ζ on the
centreline between the head and the origin. There is then no rear stagnation point, all
material paths eventually converge into the head, and the buoyancy loss is avoided.

6.3. Comparison with the experiments of Griffiths (1986a)

It is not possible to assess from the experimental photographs how much heat loss
there is from the head. As noted previously, the dye is, to a good approximation,
a passive tracer and thus visualizes the buoyant fluid initially injected from the
experimental source rather than any ambient fluid that has been warmed. Our
calculations and the Griffiths model both give similar patterns of tracer evolution to
those observed. The shadowgraph images (e.g. figure 4c of Griffiths 1986a) clearly
reveal the sharp temperature gradients at the leading edge of the head but do not
give a clear picture of what is happening at the rear, where the temperature gradients
are much weaker. The t1/2 growth of the thermal is common to all models and there
is little difference in the predictions of the cone angle α that is swept out (table 1).

The key piece of evidence in support of the Griffiths model is the data on the rise of
the top of the thermal. After discarding a short post-release transient, fits of the form
z − z∗ = K[κ(t − t∗)]

1/2 were made (Griffiths 1986a, figure 9), with z∗, t∗ and K found
for each of 21 experiments. A power-law fit to the 21 slopes gave K ∼ Ra0.74±0.03 over
the range 250 � Ra � 25000 (see Griffiths 1986a, figure 10).

We do not believe that this difference from our solution is due to the presence of
boundaries in the experiments: while drag on the sidewalls was estimated to reduce
rise velocities by typically about 20 %, it would have a greater effect on large-volume,
large-Ra thermals and would thus weaken the dependence of K on Ra not strengthen
it. We also do not believe that the difference is due to viscosity variations between the
hot injected fluid and the cold ambient fluid, since there was no significant difference
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Figure 17. Schematic representation of the buoyancy distribution (shaded) and pathlines of
U − 2ξ for (a) a compact roughly spherical thermal, as proposed by Griffiths (1986b) and
(b) an elongated head-and-tail structure, as revealed by our calculated similarity solutions.
In case (a) the buoyancy flux across the stable manifold (SM) of the rear saddle point (RS)
prevents it being the long-term solution. For (b) there is no rear stagnation point, and all
pathlines eventually reach the head of the thermal.

in the variation of K with Ra between the experiments with injection at 20◦C and
those with injection at 70◦C.

Instead, we note that the duration of the experiments was limited by the finite height
of the tank. As a result, the thermals only had room to grow by a factor of 1.5–2.3
(Griffiths 1986a, figure 11), and the duration of the experiment was less, and typically
very much less, than the diffusion time tD = D2

0/κ across the initial diameter D0 of the
thermal. It is plausible that the time taken for arbitrary initial conditions to asymptote
onto the exact similarity solution calculated in this paper scales with the diffusion
time across the length scale of the initial conditions. By contrast, the post-release
transient observed before the Griffiths model gave a good match to the experiments
seems comparable to the much shorter advection time Ra−1/2tD around the thermal.
We therefore believe that the experiments were in an intermediate asymptotic regime
for which the Griffiths model gives a good transient description. On a longer time
scale than the experiments, broadening of the temperature gradients at the edge of the
thermal would lead to more and more of the buoyancy leaking away into a thermal
wake, until the long-time truly self-similar solution is attained. It is plausible that the
initial leakage is slow as Griffiths hypothesized, but would accelerate as the buoyancy
and velocity distributions spread from the head to the tail.

6.4. Other effects and future work

The preceding discussion motivates a number of problems that might be worth future
theoretical examination, both for their own sake and for closer comparison with
experiments.
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First, it is clearly desirable to have a better understanding of the transient behaviour
of a thermal released from some initial condition. In particular the two hypotheses
regarding adjustment to the similarity solution on the diffusion time scale seem
plausible, but need testing. It would be interesting to know if a thermal with an initial
temperature profile that was more Gaussian than top-hat, such as might be produced
by a heater or horizontal boundary layer instead of injection, might shed a thermal
wake or tail more rapidly. The oscillatory linear eigenmodes seen in the asymptotic
decay to self-similarity in § 4 also merit investigation.

Secondly, the presence of boundaries affects the flow, especially given the slow
|x|−1 decay of the far-field velocity in Stokes flow. The magnitude of boundary effects
can be estimated from the method of images by evaluating the velocity field for
the unbounded problem at twice the distance to the nearest boundary. Boundaries
will have a significant effect when � is comparable to the distance to the nearest
boundary and will, in general, disturb the self-similar structure of the solution. An
exception to this is the case of a horizontal lower boundary at z = 0 (since the
boundary position is then invariant under the similarity transformation). The method
of § 4.1 could easily be adapted to find the similarity solution for this case: a no-
flux thermal boundary condition would be applied at ζ = 0, and an appropriate
image system (see, for example, Pozrikidis 1992, § 3.3) would be added to the velocity
Green’s function to yield either a stress-free or no-slip condition on the velocity
field.

Thirdly, the solution would be affected by variations of the fluid viscosity with
temperature. Viscosity variations can be quite large in geophysical situations and
with some experimental fluids. The consequent effect on the flow may not be as large
as might initially be expected, since the rise of a buoyant blob of one fluid through
another is principally governed by the viscosity of the outer fluid rather than the
inner. For example, other parameters being equal, the rise of a spherical bubble (zero
internal viscosity) is only 25 % faster than that of a spherical drop of equal viscosity
to the surrounding fluid (see Batchelor 1967, § 4.9). Therefore, while we would expect
a low-viscosity thermal to have a slightly faster rise velocity and a slightly enhanced
circulation inside the head, the overall scalings will probably not change by much.
The tail-forming tendency may be somewhat reduced as the reasonably warm fluid
in the tail rises more rapidly in a Poiseuille-like flow along a ‘conduit’ formed by the
more viscous surrounding fluid (Griffiths & Campbell 1990). The importance of this
flow will decrease as the aspect ratio of the thermal increases with Ra . We also note
that T → T0 as the thermal rises and cools, and hence any viscosity contrasts will
naturally decay. Therefore at sufficiently large times, the uniform-viscosity solutions
presented here will be a good representation of the flow.

Turning the question around, the above considerations also guide the design
of experiments intended to give a good comparison with the theoretical solution
presented here. The combination of a small heat source and a large tank is clearly
necessary to minimize the effects of transients and boundaries. Small temperature
contrasts and a fluid, such as silicone oil, with only a weak dependence of viscosity
on temperature will minimize viscosity variations. It will be much harder to satisfy
all these constraints in a large-Rayleigh-number regime.

Direct applications to the Earth’s mantle are fraught with complications as
mentioned in the introduction. Since convection from the core–mantle boundary
is usually thought to be dominated by plumes rather than thermals, the points of
interest may be to address the low temperature excess in plume heads (cf. Farnetani
1997; Bunge 2005) or heat loss during flow past a steady plume (cf. figure 1). Jellinek
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& Manga (2004) suggest that convection in other terrestrial planets may be dominated
by thermals rather than plumes owing to the absence of plate tectonics.

In conclusion, there is much still to be understood, even in the context of apparently
simple theoretical problems that might form building blocks in a more complex
picture. Despite the simplifying assumptions used in this work, the exact similarity
solution obtained, together with the insights obtained by successful modelling of the
large-Rayleigh-number behaviour, form a useful base for further work.

Appendix A. Green’s function for an axisymmetric ring of Stokeslets
For the numerical scheme described in § 4.1, we require the Green’s function G for

the unbounded Stokes flow due to the body force

f (ξ ) = δ(ρ − ρ0) δ(ζ − ζ0) êζ , (A 1)

where (ρ, φ, ζ ) are cylindrical polar coordinates, and êζ is the unit vertical vector. We
start from the Stokeslet integral representation

G(ξ ; ρ0, ζ0) =

∫
J(ξ − ξ ′) · f (ξ ′) d3ξ ′, (A 2)

where

J(x) =
1

8π

(
I

|x|
+

xx

|x|3

)
(A 3)

is the Oseen tensor (see Pozrikidis 1992, § 2.2) for unit viscosity. After integrating over
the two delta functions, we obtain

G(ξ ; ρ0, ζ0) =
ρ0

4π

∫ π

0

(ζ − ζ0)(ρ − ρ0 cos φ)

R3
êρ +

(
1

R
+

(ζ − ζ0)
2

R3

)
êζ dφ, (A 4)

where R2 = (ζ − ζ0)
2 + ρ2 + ρ2

0 − 2ρρ0 cos φ. The integral in (A 4) can be written in
terms of the complete elliptic integrals, K and E, of the first and second kind. We
obtain

G(ξ ; ρ0, ζ0) =
ρ0(ζ − ζ0)

4πρR+

(
K(k) − (ζ − ζ0)

2 + ρ2
0 − ρ2

R2
−

E(k)

)
êρ

+
ρ0

2πR+

(
K(k) +

(ζ − ζ0)
2

R2
−

E(k)

)
êζ (A 5)

where R2
± =(ζ − ζ0)

2 + (ρ ± ρ0)
2 and k = 2

√
ρρ0/R+. Further details can be found in

Pozrikidis (1992, § 2.4). To evaluate the elliptic functions numerically, we followed the
method of Lee & Leal (1982).

Appendix B. The Stokes flow driven by an idealized tail
Using matched asymptotics, we consider the Stokes flow with unit viscosity driven

by the body force

f (ξ ) =

{
(ζ − ζ0)e

−ρ2/a2

êζ for 0 < ζ − ζ0 < �

0 otherwise
(B 1)

in the limit a � �. We use cylindrical polar coordinates (ρ, φ, ζ ) to represent the
position vector ξ .
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We first consider the outer flow Uo in ρ 	 a, which is driven at leading order by a
line of Stokeslets of density F (ζ ) = πa2(ζ − ζ0) for 0<ζ − ζ0 < �. Using the integral
representation (A 2), we write

Uo(ξ ) =
1

8π

∫ ζ0+�

ζ0

(
êζ

|ξ − ζ ′ êζ | +
(ξ − ζ ′ êζ )(ξ − ζ ′ êζ )

|ξ − ζ ′ êζ |3

)
F (ζ ′) dζ ′. (B 2)

The vertical component of Uo can be rewritten as

Wo(ρ, ζ ) =
a2

8

(
2 + ρ

∂

∂ρ

) ∫ ζ0+�

ζ0

(ζ ′ − ζ0) dζ ′[
(ζ − ζ ′)2 + ρ2

]1/2
. (B 3)

This integral can be evaluated analytically, from which we obtain

Wo(ρ, ζ ) ∼ a2ζ̃

2

{
− ln

(ρ

�

)
− 3

2
+

1

2
ln

(
4
ζ̃

�

[
1 − ζ̃

�

])}
+

a2�

4
+ O

(ρ

�

)
(B 4)

where ζ̃ = ζ − ζ0, as the asymptotic expression for the inner limit of the outer flow.
Turning to the inner flow Ui(ρ, ζ ) in ρ = O(a), we use boundary-layer

approximations to reduce the vertical component of the Stokes equations to

1

ρ

∂

∂ρ

(
ρ

∂Wi

∂ρ

)
= ζ̃e−ρ2/a2

, (B 5)

for 0< ζ̃ < �. Integrating twice, we obtain

Wi(ρ, ζ ) = Wc(ζ ) − a2ζ̃

4
(Ei(ρ2/a2) + 2 ln(ρ/a) + γ ), (B 6)

where Ei(x) =
∫ ∞

1
t−1e−xt dt , and γ = 0.5772 . . . is Euler’s constant. Wc(ζ ) is the

centreline velocity, but appears here as an undetermined constant of integration.
The outer limit of this inner solution is given by

Wi(ρ, ζ ) ∼ Wc(ζ ) − a2ζ̃

2

(
ln(ρ/�) + ln(�/a) +

γ

2

)
. (B 7)

Matching the inner and outer solutions (B 4) and (B 7), we obtain an asymptotic
expression for the centreline velocity. Neglecting the second logarithmic term in (B 4),
which is numerically smaller than −3/2 except very close to the ends, we obtain

Wc(ζ ) ∼ a2ζ̃

2

(
ln

(
�

a

)
+

γ

2
− 3

2

)
+

a2�

4
. (B 8)

Numerical calculation of the full velocity field (e.g. using the Green’s function method
described in Appendix A) shows that this expression is indeed a good approximation
for �/a � 10. Moreover, for moderate values of �/a, it is significantly better
than the leading-order slender-body result, which comprises only the logarithmic
term.

Appendix C. Full tail solution at next order
In § 5.3 we described an extended model for the tail at large Ra , building on

the leading-order asymptotic model of § 5.1. The Gaussian distribution (5.18) was
assumed for simplicity, though it only approximately satisfies the full heat equation
(2.16), owing to the small corrections to the uniform strain (5.2) that are revealed by
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Appendix B. In order to complete a formal asymptotic correction to the leading-order
model, we would write

Θ =
[
Gζ̃ + g1(ζ̃ )

]
e−ρ2/a2

+ Θ1(ρ, ζ̃ ) (0 < ζ̃ < �) (C 1)

where g1 is a small perturbation to the horizontally integrated buoyancy and Θ1

is a small perturbation from Gaussian form with zero horizontal average, i.e.∫
Θ1ρ dρ = 0. From the leading-order solution, g1, Θ1 � Gζ̃ .
Following through the calculations of Appendix B yields additional terms

proportional to g1 ln(ρ/�) in (B 4), g1 ln(ρ/a) in the outer limit of (B 6) and hence
g1 ln(�/a) in (B 8). The contribution of Θ1 and the local contribution of g1 to Wi are
both negligible at this order. When we evaluate the heat-flux condition (5.1), we can
use g1 to eliminate the logarithmic term that was previously neglected in (B 4), and
thus recover (5.21) and (5.22). Hence

g1(ζ̃ ) = −Gζ̃

2

ln
[
4ζ̃ (� − ζ̃ )/�2

]
ln (�/a)

. (C 2)

The numerator of this equation is numerically small except very close to ζ̃ = �.
The solution for Θ1 is found by writing U ∼ (−ρ, 2ζ )+ U1, where the O[1/ ln(�/a)]

contribution to U1 can be deduced from Appendix B. Then Θ1 satisfies (5.4) with the
right-hand side replaced by U1 · ∇[Gζ̃ exp(−ρ2/a2)]. It is not possible to fully integrate
this equation analytically, but numerical solution shows that the contribution of Θ1

to the next-order correction term for Θ is numerically smaller than the contributions
already included in Gζ̃ . Though Θ1 has zero horizontal average, it makes a numerically
small correction to the centreline gradient (5.21), amounting to only about 20 % of
that due to the term (γ − 3 − ln 2)/2. It does not affect either the velocity field or the
vertical heat-flux condition at this order.

In summary, the velocity field U calculated with the extended model in § 5.3 is
asymptotically correct at this order, while the buoyancy distribution assumed for
simplicity in (5.18) lacks the small corrections shown in (C 1) and (C 2) and is thus
not quite linear in ζ̃ .
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